
Chapter 6

Delta Hedging

I will assume that you are already familiar with the Black�Scholes theory of
delta hedging. The aim of this Chapter is to test how delta hedging works in
practice. What happens if we only hedge in discrete time? What if there are
transaction costs.

If you would like to link this material with the previous reading on risk-
neutral pricing, the motivation for delta hedging is described in section A6 of
�C++ for Financial Mathematics� by John Armstrong. Section 14.1 of that
book also derives the di�erence equations for discrete time delta hedging. No
C++ is needed to understand this material.

In practice, delta hedging doesn't work perfectly so we would like to address
the question of how much a trader should actually charge for an option in
practice. We'll give an initial answer using a simple idea of my own invention
called the 99%-pro�t price. At the end of the chapter we will redo the calculation
using a more sophisticated idea called indi�erence pricing.

6.1 The 99% pro�t price

To test the e�ectiveness of delta hedging we will make an unconventional de�-
nition.

De�nition. The 99%-pro�t price is the amount that a trader needs charge for

a �nancial product to ensure that they only make a loss 1% of the time.

This de�nition is completely non-standard, so don't mention it in job in-
terviews and expect it to be understood. It is my invention. It is a simpli�ed
version of the "indi�erence price" that we will discuss later.

Note that the 99%-pro�t price epends not only on the product being sold but
also on the trader's strategy. If one trader has a better strategy than another
trader, they will be able to charge a lower price. Exactly the same is true for
the slightly more sophisticated notion of an indi�erence price.
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To test the e�ectiveness of delta hedging we will consider the following very
concrete situation.

Example 1: A stock follows geometric Brownian motion with drift µ = 0.05,
volatility σ = 0.2 risk free rate r = 0.03. The current stock price is $100.

A speculator, Jancis, wishes to purchase a call option with strike $110 and
maturity 0.5. She contacts three banks and ask for quotes. The traders at each
bank have been told by their boss that they can only make a loss 1% of the
time, so they quote the 99%-pro�t-price for their strategy.

What prices are quoted by the following three banks?

(A) Bank A's trader, Amy, performs no hedging. She simply:

� Sells the call

� Puts the money paid by the customer into a risk free account option

� Crosses her �ngers.

(B) Bank B's trader, Bob, uses the a stop loss strategy. He:

� Sells the call

� Each day he checks if the stock price is greater than the strike. If
so he ensures that he is holding one unit of the stock, otherwise Bob
ensures that he is holding zero units of the stock.

� Bob puts any remaining cash or debt into a risk free account.

� At maturity, he is holding the stock if and only if he is going to have
to deliver it to the customer.

(C) Bank C's trader, Cesare, has the bene�t of an MSc in mathematical �nance.
He:

� Sells the call

� Each day he uses the program he wrote in FM06 to compute the delta
of a stock to compute the current delta. He ensures that he is holding
precisely delta units of the stock.

� Cesare puts any remaining cash or debt into a risk free account.

� At maturity he delivers the stock to the customer if required and sells
any outstanding stock holding.

The calculations for cases A and B as exercises, we will show how to perform
the calculation for case C. Not unexpectedly, it turns out that Bank C is able
to charge the lowest price.

This means that our speculator, Jancis, will be happy because she is able to
get a lower quote for the option than would be possible if no one was following
the delta hedging strategy. Cesare, the trader at Bank C, is also happy because
99% of the time he will make a pro�t.
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Why doesn't Jancis simply delta hedge herself? Because she doesn't have
the time. She is a speculator interested in pursuing her own (risky) investment
strategies and is happy to pay for the service provided by Cesare who, in e�ect,
is delta hedging on her behalf but at a price.

6.1.1 Our plan of campaign

To compute the 99% pro�t price we will begin by assuming the trader charges
$0. We will then simulate a large number of price paths in the P measure.

At each time point, we will follow the recipe given in the strategy to compute
how much the investor puts into stock and into the bank. We will also compute
any accrued interest. By working through to the �nal time point we will be able
to compute the �nal bank balance�i.e. the trader's pro�t for every price path.

If we then compute the �rst percentile of the pro�t across the price paths,
x, −e−rTx is an unbiased estimator of the 99%-pro�t-price. To see this, simply
notice that if the trader had charged −e−rTx instead of 0 and put this in the
bank their bank balance at each time t would be −er(t−T )x higher than it was
the last time. Therefore their �nal bank balance in the worst one percent of
cases will be −x+ x = 0.

6.1.2 Calculating the cash�ows

Let us write down di�erence equations which allow us to calculate the bank
balance of the trader at each point in time. We can then code up these di�erence
equations in Matlab.

In our mathematical formulae we will use the following notation:

� S0, K, σ, µ, r and T are the usual suspects.

� n is the number of time steps, so we have n + 1 time points numbered
from 0 to n.

� δt = T/n.

� P for the price paid by the customer.

� Sj for the stock price at time point j.

� ∆j for the Black Scholes delta of the stock at time point j.

� bj for the bank balance at the end of time point j.

We'll sometimes use more descriptive names in our code.
At time 0: the customer pays P ; the trader purchases ∆0 stocks. Therefore

the trader's bank balance at time 0 is:

b0 = P −∆0S0 (6.1)
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At intermediate times t where t 6= 0 and t 6= n: the money in the bank earns
interest; the trader purchases ∆t −∆t−1 stocks. Therefore the bank balance at
time i is:

bt = erδtbt−1 − (∆t −∆t−1)St (6.2)

We can use this recurrence relation to compute the bank balance at all future
times.

At the �nal time: the money in the bank earns interest; the trader sells
∆n−1 shares; the trader ful�ls the call option contract at cost

max{Sn −K, 0}.

So the bank balance at the �nal time is:

bn = erδtbn−1 + (∆n−1)Sn −max{Sn −K, 0} (6.3)

6.1.3 Simulating delta hedging in MATLAB

The �rst part of our implementation is to write a function that computes the
Black�Scholes delta. We have in fact decided to write our black scholes pricing
function in such a way that it returns the price, the delta and the gamma all at
once. This makes it quite a convenient function to use without actually adding
much complexity.

function [ price, delta, gamma ] = ...

    blackScholesCallPrice( K, T, S0, r, sigma )

% Computes the price of an option using

% the Black Scholes formula.

% (The parameter order is contract terms

% then market data.)

numerator = log(S0./K) + (r+0.5*sigma.^2).*T;

denominator = sigma.*sqrt(T);

d1 = numerator./denominator;

d2 = d1 - denominator;

price = S0 .* normcdf(d1) - exp(-r.*T).*K.*normcdf(d2);

delta = normcdf(d1);

gamma = normpdf(d1) ./ (S0.*denominator);

end

With this preliminary, we are ready to write the code to simulate delta
hedging and hence compute the 99% pro�t price. We begin by writing a function
to simulate the pro�t and loss due to delta hedging when one charges a �xed
amount. Here is how the function is declared.
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function [ finalBankBalance] = simulateDeltaHedging( ...

chargeToCustomer , ...

K, T, ...

S0, r, mu, sigma , nPaths , nSteps )

Let us now write the body of this function. We begin by generating a large
number of stock price paths. Notice that it is crucial that we are simulating in
the P measure.

dt = T/nSteps;

times = dt:dt:T;

paths = generateBSPaths( T, S0, mu, sigma, nPaths, nSteps );

We next use equation (??) to compute the bank balance at time 0.

[~,delta] = blackScholesCallPrice(K,T,S0,r,sigma);

stockQuantity = delta;

cost = stockQuantity .* S0;

bankBalance = chargeToCustomer-cost;

The ~ symbol simply means that we have chosen to ignore the �rst returned
value of the blackScholesCallPrice function namely the call price. As you
can see we have chosen to write the code using long variable names. The code
essentially re-derives (??). In my view this makes the code easy to read without
needing to cross-refer to a mathematical document which describes what is going
on.

We now loop through all the intermediate times using equation (6.2).

for t=1:(nSteps-1)

    S = paths(:,t);

    timeToMaturity = T-times(t);

    [~,delta] = blackScholesCallPrice(...

        K,timeToMaturity,S,r,sigma);

    newStockQuantity = delta;

    amountToBuy = newStockQuantity - stockQuantity;

    cost = amountToBuy .* S;

    bankBalance = exp(r*dt)*bankBalance - cost;

    stockQuantity = newStockQuantity;

end

Our code doesn't copy (6.2) to the letter. We have made a few changes.
Firstly, in our mathematics we have used separate variables bt and bt−1 for

each time. In our code we have just bankBalance. Reusing the same variable
saves a little memory. In mathematics you can't �reuse� variables in this way
because an equation like bankBalance = bankBalance+1 doesn't make mathe-
matical sense.
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Secondly in our mathematics we have used the symbols ∆t and ∆t−1 but in
our code we have introduced variables newStockQuantity and stockQuantity.
These help explain where the equation come from and will prove to be useful
when you generalize the code to strategies other than delta hedging.

Finally we will use (6.3) to compute the �nal bank balance. This allows us
to compute the pro�t and loss.

S = paths(:,nSteps);

stockValue = stockQuantity .* S;

liability = max(S-K, 0);

bankBalance = exp(r*dt)*bankBalance + stockValue - liability;

finalBankBalance = bankBalance;

This completes the simulateDeltaHedging function.

6.1.4 Computing the 99% pro�t price

We can now compute the 99% pro�t price. To do this we simply plot a graph
of the discounted pro�t and loss if we charge zero. We can then read o� the 1st
percentile to see how much we need to charge. This can be automated using
the prctile function in MATLAB. Doing this is left as an exercise.
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6.2 Delta hedging - Theory and Practice

Let us suppose that instead of charging the 99% pro�t price, the trader had
charged the Black-Scholes price. We assume that the trader still delta hedges
in continuous time. The distribution of pro�t and loss is then as shown below.
As one can see, the Black-Scholes price will ensure that on average one roughly
breaks even.
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However, discrete time delta hedging is de�nitely a risky strategy: this his-
togram is fairly wide. As you can check, the smaller δt is, the narrower the
histogram.

Probably all you have ever seen proved is that if you delta hedge in contin-
uous time, then you will exactly break even.

A slightly more elaborate theory tells us that if a trader charges the Black
Scholes price then performs the delta hedging trading strategy at n discrete
times the expected pro�t should tend to zero as n → ∞ and moreover the
standard deviation of the pro�ts should tend to zero. This can be proved by
combining the theory on discrete time approximations to stochastic di�erential
equations with Black-Scholes result.

Proving this is beyond the scope of this course, but we can at verify numer-
ically whether it it is true.

To do this, we de�ne the error of the strategy to be the pro�t or loss in
each particular case. We de�ne the relative error to be the root mean squared
error divided by the initial option price. The theory above suggests that the
relative error of delta hedging a call option at the Black-Scholes price should
tend to zero as δt→ 0.

We plot a log-log plot of the relative error against the number of time steps
n.
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From the graph it appears from the graph that the relative error is of order
n−

1
2 . This can be proved using the theory of discrete time approximations to

stochastic di�erential equations.
The fact that delta hedging cannot be performed in continuous time is just

one possible criticism of the Black�Scholes theory. Using our simulations it is
possible to quantify the importance of other assumptions in the theory. For
example, how important our transaction costs?

A standard way to model transaction costs is to consider the bid-ask spread.
We will model the ask price as following geometric Brownian motion as usual.
We will model the bid price as being (1 − ε)St for some ε. You can look at
market data for the stock price to choose a sensible value of ε. This model is
called �proportional transaction costs�.

As well as the bid-ask spread, exchanges often levy charges. If these are
proportional to the transaction cost, they can be modelled in the same way.
Financial mathematicians use the phrase �transaction costs� to mean both the
bid-ask spread and charges.

What happens if a trader follows the delta hedging trading strategy in the
face of proportional transaction costs. Adapting the di�erence equations to
include transaction costs is left as an exercise. Here is a plot of the result.
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This shows that delta hedging is helpful if one rehedges reasonably infre-
quently. However, if one attempts to rebalance the portfolio too often, transac-
tion costs begin to dominate.

In practice, delta hedging converges slowly. Once transaction costs are taken
into account, the delta hedging strategy is not enough to explain observed call
option prices. We conclude that, important though the idea of delta hedging is,
there must be something more going on in the market.

6.3 Gamma Hedging

A trader can, if they want, buy exchange traded options to manager their own
risk.

Why would they want to do this rather than just delta hedge? As we have
seen, in practice delta hedging alone cannot explain market prices: it is cheaper
to buy exchange traded options than to delta hedge.

But if even a derivatives trader cannot make money by delta hedging, where
does this leave the Black-Scholes theory? The answer to this is that a trader
does not simply buy a single call or put option. Throughout the day they
regularly trade in options at di�erent strikes and possibly exotic options too.
Buy matching up people who want to buy and sell options, the trader is able
to make a pro�t throughout the day because of the bid ask spread. Moreover
they are able to meet market demand for less popular products such as out of
the money options and exotics.

Where hedging comes in is that it means that the trader doesn't need to
precisely match there buying and selling activity. At the end of the days trad-
ing, the trader will be left with some net risky position. But the trader can
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then hedge away this risk by buying stock, or if they prefer exchange traded
options. Notice that the trader does not need to hedge each trade they have
performed individually. They can rehedge an entire portfolio with just a couple
of trades. This means that traders achieve an economy of scale, so banks are
not as adversely a�ected by transaction costs as an individual trying to hedge
their own portfolio.

A standard trading strategy is to gamma hedge a portfolio. This means to
buy stock and exchange traded options in order to ensure that the portfolio has
an overall delta and gamma of zero. Recall that the gamma is the second partial
derivative of the price with respect to a change in the stock price.

To understand the motivation for the gamma hedging strategy, recall that
when we delta hedge, we ensure that our portfolio consisting of

� Our stock holding

� Our liability

� Our bank balance

has an aggregate delta of zero. Intuitively this means that if the stock price
changes, are portfolio's aggregate value won't change much�it won't change to
�rst order in the stock price. If we could ensure that our portfolio had a delta
of zero and a gamma of zero, we could ensure that it won't change to second
order in the stock price. Presumably this will be a better strategy.

So, in detail the gamma hedging strategy is to write a portfolio of options
and then at �xed time intervals, purchase stock and an exchange traded option
so that our portfolio consisting of:

� Our stock holding

� Our holding in exchange traded options

� Our liability (the exotic option)

� Our bank balance

has an aggregate delta of zero and an aggregate gamma of zero.
For simplicity, let us suppose that the hedged portfolio consists of a single

option and compute how well the gamma hedging strategy performs in this case.
Let us write the mathematical di�erence equations we need to solve to com-

pute the e�ectiveness of gamma hedging.
At time point j we have the following variables. The option we are writing

has strike K1. Its Black Scholes price is P 1
j , its delta is ∆1

j and its gamma is

Γ1
j . The hedging option has price P 2

j , delta ∆2
j and gamma Γ2

j . The stock price

is Sj . The trader's bank balance is bj The trader's stock holding is qSj The

trader's holding in option 1 is q1j = −1 since they have written the option. The

trader's holding in option 2 is q2j .
By linearity of partial derivatives, the delta of our portfolio is:

qSj + ∆1
jq

1
j + ∆2

jq
2
j
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The gamma of our portfolio is:

Γ1
jq

1
j + Γ2

jq
2
j

We know that q1j = −1. We require the portfolio to be delta and gamma neutral
hence:

qSj −∆1
j + ∆2

jq
2
j = 0

−Γ1
j + Γ2

jq
2
j = 0

We deduce that

q2j =
Γ1
j

Γ2
j

qSj = ∆1
j −∆2

jq
2
j

These recurrence relations allow us to simulate the strategy.
Note that we have solved two linear equations to get a gamma neutral port-

folio. This is why we need to trade in two products (the stock and the hedging
option) in order to obtain a gamma neutral portfolio.

One problem with our equations is that if Γ2
j becomes very small then the

equation

q2j =
Γ1
j

Γ2
j

will start to cause numerical errors. This will happen if option 2 is a long way
into the money or a long way out of the money we will start to see numerical
errors. When we implement the gamma hedging strategy in Matlab we choose
to modify our strategy to be to try to choose q2j using the above formula, but
cap the value at 100 or −100 to avoid numerical errors.

Another problem we will face is that the gamma is the second derivative of
the price and at maturity, the payo� of a call option is not di�erentiable. For this
reason the gamma can sometimes tend to in�nity near maturity. This too can
lead to numerical errors. So in our simulation of gamma hedging, therefore, we
stop the simulation a little before maturity and calculate the �market price� of
the portfolio using the Black Scholes Formula. To accommodate this, introduce
a variable sellTime to indicate when we sell our portfolio.

To test the e�ectiveness of gamma hedging we will see what happens if we
charge the Black-Scholes price for option 1 at the start of trading and then
liquidate our portfolio at the sellTime. Our aim is to generate a log-log plot
of the �relative error� of this strategy exactly as for the delta hedging strategy.
Here is the MATLAB code to do this.

dt = sellTime/nSteps;

times = dt:dt:sellTime;

paths = generateBSPaths( sellTime, S0, mu, sigma, nPaths, nSteps );

[~,delta1, gamma1] = blackScholesCallPrice(K1,T,S0,r,sigma);

[p2,delta2, gamma2] = blackScholesCallPrice(K2,T,S0,r,sigma);
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option2Quantity = max(min(gamma1./gamma2,100),-100);

stockQuantity = delta1 - option2Quantity .* delta2;

stockCost = stockQuantity .* S0;

optionCost = option2Quantity .* p2;

bankBalance = chargeToCustomer -stockCost-optionCost;

for t=1:nSteps

    S = paths(:,t);

    timeToMaturity = T-times(t);

    [p1,delta1,gamma1] = blackScholesCallPrice(K1,timeToMaturity,S,r,sigma);

    [p2,delta2,gamma2] = blackScholesCallPrice(K2,timeToMaturity,S,r,sigma);

    newOption2Quantity = max(min(gamma1./gamma2,100),-100);

    newStockQuantity = delta1 - newOption2Quantity .* delta2;

    stockCost = (newStockQuantity - stockQuantity).* S;

    optionCost = (newOption2Quantity - option2Quantity).* p2;

    bankBalance = exp(r*dt)*bankBalance - stockCost - optionCost;

    stockQuantity = newStockQuantity;

    option2Quantity = newOption2Quantity;

    marketValue = bankBalance + stockQuantity.*S - p1 + option2Quantity.*p2;

end

In our delta hedging simulation, we had two special cases, time zero and
maturity. In this simulation, because we stop the simulation before maturity,
we have one less special case. Note also the min and max in the computation of
option2Quantity. This prevents numerical errors.

We can now look at a log-log plot of the relative errors of the various trading
strategies against the number of time steps, n.
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We conclude that Gamma hedging allows one to achieve the price predicted
by Black Scholes with much less rehedging. This means that Gamma hedging
allows one to achieve a price much closer to the Black Scholes price when there
are transaction costs in the model. It would appear that the rate of convergence
of the gamma hedging strategy appears to be order n−1 and this can be proved
mathematically.

6.4 Indi�erence pricing

As we mentioned earlier, the concept of the 99% pro�t price is my own invention
and it is in some ways a rather silly idea. Surely we should care about how much
loss we may make in the 1% of bad cases? Indi�erence pricing gives a way of
taking this into account. (All the code that we have just written to compute
the 99% pro�t price will be reused to compute indi�erence prices, so we have
not been wasting our time.)

To perform indi�erence pricing, one must �rst choose a utility function that
describes one's risk preferences. A utility function u : R −→ R is a function
which sends the payo� to some measure of the value that an individual places in
that payo�. Most people prefer making money to losing it, so utility functions
are usually increasing. Most people are risk averse, they value making money
less highly than they hate losing it.

An example of a utility function is the exponential utility function is:

u(x) =
1− e−ax

a

The parameter a measures risk aversion. Some plots of this utility function for
di�erent values of a are shown below.
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Suppose a trader is selling a �nancial product and

� Their utility function is u

� They plan to follow a particular strategy

� They believe the market follows some given stochastic process

De�nition. The indi�erence price given the strategy is the amount that they

would have to charge so that their expected utility remains is the same whether

or not they enter into the trade.

The above de�nition which includes a strategy in the de�nition is non-standard.
The indi�erence price (ignoring the strategy) is the price they would charge as-
suming that they choose the best possible strategy. We are ignoring all technical
details about whether these prices are actually well de�ned.

In practice, �nding the optimal strategy may be prohibitively di�cult, so in
practice it is very useful to be able to calculate the indi�erence price given the
strategy one intends to pursue.

We note that the indi�erence price is quite di�erent to the �risk-neutral�
price that you have studies in FM02. Here are some key di�erences:

� The indi�erence price is subjective

� It depends upon your utility function

� It depends on your beliefs

� It depends upon the strategy you wish to follow
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� We should really compute the total position of the trader including when
computing the indi�erence price.

� e.g. if you have already sold a call, you may be more willing to buy a call
as it will remove the risk from your books.

� You would quote di�erent indi�erence prices for buying and for selling.

In real markets with transaction costs etc. there is no single �risk-neutral�
price. One must use alternative pricing methods such as indi�erence pricing.
However, if the theoretical model is su�ciently close to the real world model,
it may well be that a real world indi�erence price is quite close to a theoretical
risk-neutral price.

Let us compute the indi�erence price for a trader using a delta hedging
strategy. We assume they have zero assets before the trade. We assume the
utility function is the exponential utility function. We assume they invest any
excess capital in the bank.

Let p be the payo� if the trader doesn't charge. So erTP + p is the payo� if
the trader charges P . The expected utility if they don't trade is 0. Therefore
we must choose P to solve:

E(u(erTP + p)) = 0 (6.4)

This is easy to do in MATLAB as MATLAB comes with a function called
fsolve to solve equations numerically. For example, suppose we want to �nd a
solution to sin(x) + exp(x) = 0 and we have an initial guess that x = 0.1 might
be near a solution we would use the following code.

    function ret=toSolve(x)

      ret = sin(x) + exp(x);

    end

    guess = 0.1;

    solution = fsolve( @toSolve, guess );

    assert( abs(toSolve( solution ) )<0.001);

The function fsolve can be used to �nd solutions of equations in MATLAB and
is often useful. For example, you can use it to compute the implied volatility of
an option. This is left as an exercise.

In our case we wish to solve (6.4) for P . This motivates the following code
that computes the indi�erence price for a particular option given that we delta
hedge with a certain frequency.

function indifferencePrice= computeIndifferencePrice( a )

%  Compute the indifference price when the trader uses

%  The delta hedging strategy

K = 110;
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T = 0.5;

S0 = 100;

sigma = 0.2;

mu = 0.05;

r = 0.03;

nPaths = 10000;

nSteps = 133;

payoff = simulateDeltaHedging(0,K,T,S0,r,mu,sigma,nPaths,nSteps);

% Define the utility function

function utility=u( x )

    utility = (1-exp(-a.*x))/a;

end

% Write a function that computes the expected utility

% given the price

function ret=expectedUtility( price )

    ret = mean( u( exp(r*T)*price + payoff ) );

end

% Initial guess

[blackScholesPrice,~] = blackScholesCallPrice(K,T,S0,r,sigma);

% Use fsolve to find the solution

indifferencePrice = fsolve( @expectedUtility, blackScholesPrice );

end

6.5 Further Reading

See [2] for a discussion of delta and gamma hedging. The theory in this chapter
can also be found in the chapter on delta hedging in [1]. Simply ignore the C++
code discussed in this chapter.
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