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Overview of Course
1. Definition and examples of Riemann Surfaces

2. Understand statement: S2 is unique genus 0 Riemann surface.

3. Understand statement: All genus 1 surfaces are given as C/Λ.
The moduli space is biholomorphic to C.

4. S2 is unique surface with a meromorphic function with exactly
1 pole of degree 1.

5. TODO: The C/Λ are the only compact surfaces with a
non-vanishing holomorphic 1 form.

6. TODO: Definition and examples of De Rham cohomology.

7. TODO: Definition of Dolbeault cohomology.

8. TODO: Understand statement: The existence and uniqueness
of meromorphic functions and forms is encoded by Dolbeault
cohomology.

9. TODO: Equivalence of De Rham and Dolbeault cohomology
on surfaces.

10. TODO: 2 and 3 follow from 4 and 5 given 7 and 8.
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Except...

1. We may only get as far as the S2 results — i.e. may not prove
4.

2. We won’t prove equivalence of Dolbeault and De Rham
cohomology.

3. We will show that it is equivalent to the existence and
uniqueness of solutions to a certain partial differential
equation.

4. In Part II of Donaldson’s book he develops enough functional
analysis to “solve” this partial differential equation.
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Easier reading

1. Our description of the fundamental group has been ultra brief.
Any algebraic topology book can fill in the gaps. I learned this
from M Armstrong, Basic Topology.

2. Our description of differential forms and calculus on surfaces
will proceed at a break-neck pace. Spivak’s “Comprehensive
introduction to differential geometry” is much much slower.

3. Kirwan’s “Complex Algebraic Curves” covers similar ground to
this course at a slower pace.



Integration on one manifolds

Suppose x : U −→ R and y : U −→ R and X are two coordinates
on a 1 manifold. Let ψ = x ◦ y−1 be the transition function. If f is
a real valued on R then:∫

x(U)
f (x)dx =

∫
y(U)

f (ψ(y))
dx

dy
dy

=

∫
y(U)

f (x(y))
dx

dy
dy



Densities on one manifolds

Definition
A density at a point p on a 1-manifold is an equivalence class of a
pair (f , x) where f is a number and x is a chart x −→ R centered
at p. The equivalence relation is given by:

(f , x) ∼ (g , y) ⇔ g = f
dx

dy

A density is a smoothly varying set of densities at each point of the
1-manifold.
The integral of a density ρ ∼ (f , x) over U is given by∫

U
ρ =

∫
x(U)

f dx

We denote the equivalence class [f , x ] by f dx .
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Densities on n-manifolds

If ψ : Rn −→ Rn is a diffeomorphism we have:

∫
U
f (x1, . . . , xn) dx1 . . . dxn =

∫
U
f (x(y))∂(x, y)dy1 . . . dyn

=

∫
psi(U)

f (ψ−1(y))∂(ψ, x)−1dy1 . . . dyn

Where ∂(x, y) is shorthand for the determinant of the Jacobian
matrix.

Definition
A density on an n-manifold is an equivalence class (f , φ) where:

(f , φ) ∼ ((f ◦ ψ)∂(ψ, x)−1, φ ◦ ψ)

We can now define the integral of a density over a manifold. Use a
“partition of unity” to define the integral over the entire atlas.
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Tangent vectors on 1-manifolds

Definition
A tangent vector at a point p on a 1-manifold is an equivalence
class of a number v and a chart x with:

(v , x) ∼ (v
dy

dx
, y)

Whereas for a density we had:

(f , x) ∼ (v
dx

dy
, y)



Transformation of densities and vectors on a 1-manifold
If we change coordinates using y = 2x then, in local coordinates,
vectors double in length but densities halve.
On a 1-manifold, densities are dual to vectors. Given a density
(p, x) and a vector (v , x) the quantity pv is independent of x . So
a density defines an invariant map from the tangent space of p to
R. A density is an element of the dual vector space of the tangent
space.



Tangent vectors on n-manifolds

Definition
A tangent vector p on an n-manifold is an equivalence class of an
element v = (v i ) ∈ Rn and a chart x = (x1, . . . , xn) centered at p
with:

(v i , x) ∼ (
∑
j

∂y i

∂x j
v j , y)

The upper indices are simply labels not powers. So x2 is a
completely different coordinate from x1. It isn’t its square.
Surprisingly this convention doesn’t end up causing too much
confusion!
A vector field is a smoothly varying choice of vector at each point.
The tangent space TpM at a point p on a manifold M is the set of
all tangent vectors at p. It has an obvious vector space structure.
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Cotangent vectors on n-manifolds

Definition
A cotangent vector p on an n-manifold is an equivalence class of
an element ω = (ωi ) ∈ Rn and a chart x = (x1, . . . , xn) centered
at p with:

(ωi , x) ∼ (
∑
j

∂x j

∂y i
ωj , y)

I It is a standard convention to use upper-indices for
components of vectors and coordinates and lower-indices for
components of forms.

I Equivalently a cotangent vector is an element of (TpM)∗ the
dual space of the tangent space. To see this, given a
cotangent vector (ωi ) we define a map from the tangent space
to R by (v i ) −→

∑
i ωiv

i . This map does not depend on the
choice of coordinates.
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The exterior derivative of a function

Given a function f on a manifold and coordinates x define

dxf = (
∂f

∂x1
, . . . ,

∂f

∂xn
)

This looks like the definition of the gradient of a function. What
happens if we change coordinates?

∂f

∂y i
=

∑
j

∂f

∂x j
∂x j

∂y i

We conclude that (dxf , x) and (dyf , y) are equivalent cotangent
vectors. Hence we have a well defined cotangent vector df given
independently of our choice of coordinates.
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Transformation of covectors and vectors

A good way to draw df is to draw its contours. If we rescale by a
factor of 2, the terrain becomes shallower by a factor of two as
vectors become longer by a factor of 2. The total distance
travelled up or down remains constant.



Summary so far:

I A vector is a collection of n-numbers in local coordinates that
transform like a vector.

I A density is a single number in local coordinates that
transforms like a density.

I A covector is an element of the dual space of the tangent
space. Alternatively it is something that transforms like a
cotangent vector.

I We can associated a smooth covector field df to a smooth
function f . It is somewhat analagous to the gradient of a
function, but it is defined independent of coordinates. The
standard gradient is only defined up to isometries of Rn — it
depends on the metric.

I On 1-manifolds covectors and densities are the same thing —
but they’re completely different concepts in higher dimensions.
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Pushing vectors forward

Given a smooth map F : X −→ Y betwen smooth manifolds if
sending a point p ∈ X to q ∈ Y we can define a mapping
F∗ : TpX −→ TqY .

X Y
F



Formal definition of F∗

Given charts x for X and y for Y. If v i are the components of a
vector V define F∗(V ) to have components:

(F∗(V ))i =
∑
a

∂y i

∂xa
va

It is easy to check that this definition is independent of the choice
of chart.

(Notice that our sums always combine a lower index and an upper
index — so long as we think of d

dx i
as having a lower index on

account of being the denominator of a fraction. In the Einstein
summation convention, one drops the

∑
symbols and always sums

over repeated indices.).
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Pulling back

I By standard linear algebra we have can define a dual map
F ∗ : T ∗qY −→ T ∗pX . We can “pull back” covectors using F ∗.

I Notice that if we have a function g : Y −→ R we can define
F ∗(g) = g ◦ f so functions on a manifold “pull back” too.

I Notice that d(F ∗g) = F ∗(dg). You can prove this by a direct
calculation, or you can think in terms of contours and say that
it is obvious. Both are worth doing!
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Areas and volumes in vector spaces

Given a vector space V a good definition of an area A for V would
be a function that associates an area A(v1, v2) to any two vectors
v1 and v2 that also satisfies:

I Linearity: A(v1 + λv2, v3) = A(v1, v3) + λA(v2, v3)

I Anti-symmetry: A(v1, v2) = −A(v2, v1).

In other words we want something that behaves rather like the
cross product on 2-vectors. The anti-symmetry condition means
that our concept of area detects orientation just as the cross
product does.
Similarly if we wanted to define a concept of a 3-volume on a
vector space we could define it as an antisymmetric multi-linear
map from V × V × V −→ R. Antisymmetric means that the value
changes sign if you swap any two vectors.
With these ideas in mind we define ΛpV ∗ of a vector space to be
the vector space of antisymmetric multi-linear maps from V to R.
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Integration on submanifolds

I A smooth p-form ω on an n-dimensional manifold M is a
smoothly varying choice from ΛpT ∗M. This is usually called a
section of ΛpT ∗M.

I Locally a p-dimensional submanifold V of M is given by a
smooth map

F : Rp −→ M

I Divide Rp into cubes of length ε. The edges of each cube
correspond to vectors so we can push them forward into M
using F . We can then use ω to measure the volume of the
cube we have pushed forward.

I Define the integral of ω over V by:∫
V
ω = lim

ε→0

∑
cubes

(p-volume given by ω)
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Integrating df on a 1-dimensional submanifold

V M
F



Fundamental theorem of calculus

The fundamental theorem of calculus is obvious. Given a 1-form ω
we write ω(X ) for the length that ω associated to a vector X .∫

V
df = lim

ε→0

∑
i

((df )Xi )

≈ lim
ε→0

∑
i

change in f over interval

= Total change in f

The geometry of the situation is clear. To make the argument
rigorous one just needs to use Taylor’s theorem to get a bound on
the error in the approximation.
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Geometric definition of the exterior derivative

Definition
(Non standard) Given a p form ω on a manifold M and vectors
X1,X2, . . . ,Xp+1 at a point in M choose a smooth map F from
Rp+1 to M such that F∗ sends the coordinate axes to the Xi . Let
∆ε be the the tetrahedron:

∆ε = {(x1, x2, . . . , xp) : xi ≥ 0,
∑
i

(xi ) ≤ ε}

Define dω by:

dω(X1,X2, . . .Xp+1) = lim
ε→0

(p + 1)!

epsilonp+1

∫
F (∂∆ε)

(ω)
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d on 0-forms.

I A 0-form is just a function, f , on a manifold. The integral of
0-form over a 0-dimensional submanifold is just the sum of f
over the points in the 0-dimensional submanifold.

I Let x be a chart centered at a point p on the manifold. Let V
be a tangent vector at p and assume that the path γ : R→ R
has tangent vector V at 0.

I Use t to denote the coordinate on R

df (X ) = lim
ε→0

1

ε

∫
γ(∂[0,ε])

f

= limε→0
1

ε
(f (γ(ε))− f (γ(0)))

I It is now clear from the chain rule that the two definitions we
have given for d on 0-forms are equivalent.
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Properties of d

I It is well defined because it only depends on first order term of
F .

I It generalizes the notion of the derivative of a function.

I It measures the rate at which the notion of
length/area/volume changes over an infinitessimal
tetrahedron.

I dω is alternating in the Xi .

I (Less obvious) it is linear in the Xi so is a (p + 1)-form.

I It satisfies Stokes’ theorem
∫
V dω =

∫
∂V ω.

I It satisfies ddω = 0. This follows from Stoke’s theorem
because ∂∂∆ε is empty.
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Proof of Stokes’ theorem

The definition of d ensures that Stokes’ theorem is infinitessimally
true.



The wedge product

I Given two 1-forms ω and ν we define ω ∧ ν as follows:

(ω ∧ ν)(X1,X2) = ω(X1)ν(X2)− ω(X2)ν(X1)

Where X1 and X2 are vectors.

I ω ∧ ν is clearly a two form.

I This definition is pure linear algebra on the tangent space.

I In general if ω and ν are p and q forms we can define:

(ω ∧ ν)(X1,X2, . . .Xp+q)) =

1

p!q!

∑
σ∈Sn

sgn(σ)ω(Xσ(1),Xσ(2), . . . ,Xσ(p))×

ν(Xσ(p+1),Xσ(p+2), . . . ,Xσ(p+q))

I Note that ω ∧ ν = (−1)pqν ∧ ω. So ∧ is anti-commuting on
1-forms.
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Formal definition of d

Definition
Ωp(M) is defined to be the space of smooth forms on M.
d : Ωp(M) −→ Ωp+1(M) is defined to be the unique R-linear map
satisfying:

1. df is the differential of f for smooth functions f as defined
earlier.

2. d(df ) = 0 for any smooth function f .

3. d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ when α is a p-form.

For surfaces, this last item simplifies to the special case
d(f α) = df ∧ α + f dα. if f is a function.
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Calculating d on a surface

I If (x1, x2) are coordinates for S centered at p then {dx1,dx2}
gives a basis for T ∗pM.

I dx1 ∧ dx2 gives a basis for Λ2T ∗pM.

I We can write any 1-form as α1dx
1 +α2dx

2. Using the axioms
we compute:

d(α1dx
1 + α2dx

2) = (dα1) ∧ dx1 + (dα2) ∧ dx2

=
∂α1

∂x1
dx1 ∧ dx1 +

∂α1

∂x2
dx2 ∧ dx1

+
∂α2

∂x1
dx1 ∧ dx2 +

∂α2

∂x2
dx2 ∧ dx2

= (
∂α2

∂x1
− ∂α1

∂x2
)dx1 ∧ dx2

I Notice that this proves that d is determined by the axioms (on
a surface).
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Remarks

I We could have used the formula from the previous slide to
define d on a surface.

I The condition ddf = 0 is equivalent to ∂2f
∂x∂y −

∂2f
∂y∂x = 0.

I To check that my non-standard definition is correct, simply
check that it satisfies the axioms.

I The standard definition is the more practical choice for most
computations.
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The Poincaré Lemma

Theorem
On R2 if ω is a 1-form and dω = 0 there exists a function f with
df = ω.

Definition
A closed p-form ω is one that satisfies dω = 0.

Definition
An exact p-form ω is one that can be written ω = dν for some
(p − 1)-form. exact forms are always closed.
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Proof of the Poincaré lemma

Theorem
On R2 a closed 1-form ω is always exact.

Define f (x) =
∫
γ1
ω. Since

∫
γ1
ω −

∫
γ2
ω =

∫
R dω = 0 we see that

f is well defined. By the fundamental theorem of calculus df = ω.
(Result follows because R2 is simply connected.)

γ1

γ2

0

x

R
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A closed form ω on R2\{0} which is not exact



De Rham cohomology

I For clarity write di = d : Ωi−1(M) −→ Ωi (M) on an
n-manifold M. We have the exact sequence:

0
d0−→ Ω0(M)

d1−→ Ω1(M)
d2−→ Ω2(M)

d3−→ 0

I Define H i (M) to be the cohomology of the sequence:

H i (M) = ker di/(Im di−1)

I The dimension of H i (M) is a topological invariant of M called
the i-th betti number. (It is not obvious whether or not the
betti numbers are finite.)

I We have shown that the 1-st betti number is zero for simply
connected spaces, but non-zero for R2.
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connected spaces, but non-zero for R2.



De Rham cohomology

I For clarity write di = d : Ωi−1(M) −→ Ωi (M) on an
n-manifold M. We have the exact sequence:

0
d0−→ Ω0(M)

d1−→ Ω1(M)
d2−→ Ω2(M)

d3−→ 0

I Define H i (M) to be the cohomology of the sequence:

H i (M) = ker di/(Im di−1)

I The dimension of H i (M) is a topological invariant of M called
the i-th betti number. (It is not obvious whether or not the
betti numbers are finite.)

I We have shown that the 1-st betti number is zero for simply
connected spaces, but non-zero for R2.



Bezout’s theorem

Definition
Two complex curves in CP2 intersect transversally at a point p if p
is a non-singular point of each curve and if the tangent space of
CP2 at that point is the direct sum of the tangent spaces of the
two curves.

Theorem
(Bezout) Two complex curves of degrees p and q that have no
common component meet in no more than pq points. If they
intersect transversally, they exactly in pq points.

If the polynomial defining a curve factorizes then each factor
defines a component of the curve. Smooth curves have only one
component because they would clearly not be smooth at ther
intersections of the components.



Proof of degree genus formula
I Given a smooth plane curve C of degree d consider the

projection from a point p to a line L with p not lieing on C .
I By the fundamental theorem of algebra, the degree of this

projection map will be d .
I We can choose coordinates so that the projection of a point

(z ,w) in affine coordinates is just z . If P(z ,w) = 0 defines
the curve then branch points correspond to points where
Pw = 0. These have ramification index 1 unless Pww = 0.

I By Bezout’s theorem we expect there to be d(d − 1) branch
points and that so long as p does not lie on a line of inflection
(i.e. a tangent to the curve through a point of inflection)
there will be exactly d(d − 1) branch points.

I By Bezout’s theorem there are a finite number of lines of
inflection (clearly points of inflection will be given by some
algebraic condition)

I So for generic p there are exactly d(d − 1) branch points of
ramification index 1.

I The degree genus formula now follows from the Riemann
Hurwitz formula.


