Function Objects and Lambda Functions

Function objects

» Function objects, also known as functors, provide an
alternative to the RealFunction class. Recall we introduced
this to write an integration routine.

» They allow you to use lambda functions, a powerful technique
to write classes more quickly

Integration using function objects

double integrate(
function<double(double)> f,
double a,
double b,
int nSteps) {
double total = 0.0;
double h = (b - a) / nSteps;
for (int i = 0; i<nSteps; i++) {
double x = a + ixh + 0.5%h;
total += h*xf(x);
}

return total;

Writing a function object

class SinFunction {
public:
double operator() (double x) {
return sin(x);
}
};

Testing it

void testIntegrateSin() {
SinFunction integrand;
double value = integrate(integrand, 0, 1, 1000);
ASSERT_APPROX_EQUAL(-cos(1.0) + cos(0.0),
value, 0.01);

Lambda functions

» Suppose we want to write a function to calculate

1
(ax? 4 bx 4 ¢) dx
0

class QuadraticFunction {
public:
/* Members */
double a;
double b;
double c;
/* Constructor */
QuadraticFunction(double a,
double b,
double c) :
a(a), b(b), c(c) {}
/* Operator */
double operator()(double x) {
return a¥x*xtb*x+c;

}

¥

double integrateQuadratic(double a,
double b,
double ¢) {

QuadraticFunction integrand(a, b, ¢);
return integrate(integrand, 0, 1, 1000);

With a lambda function

double integrateQuadratic2(double a,
double b,
double c) {
auto lambda =
[a, b, c](double x) {
return a*x*x + b*x + c;
};
return integrate(lambda, 0, 1, 1000);

Generate a class, we don't care what it is called.

We will want to capture the local variables a, b and ¢ of
integrateQuadratic2 and have them as member variables of
our class. When writing a lambda function, you list the
captured variables in square brackets.

We want to write an overload of operator () that takes a
single double parameter which we will call x. When writing a
lambda function, you list the parameter types and parameter
names in round brackets.

The actual computation for the function is written inside curly
brackets and can use both the captured variables and the
parameters.

In summary, the syntax of a lambda function is:

[CaptureParameters] (FunctionParameters) {
FunctionImplementation

¥

There is a lot of flexibility in how you write the capture parameters.

(i) You can specify that you would like to capture local variables
by reference, by using the & symbol before the parameter
name.

(i) You can specify that you would like to capture all variables by
reference simply by specifying just &.

(i) You can specify that you would like to capture all variables by
value, by specifying just =.

(iv) If your lambda function is written inside a member function of

a class, you can capture the member functions and member
variables of that class by specifying this.

Integrating an option’s payoff

double integratePayoff(PathIndependentOption& o,
double a,
double b) {
auto lambda =
[&o] (double x) {
return o.payoff(x);
s
return integrate(lambda, a, b, 1000);

Function pointers

To compute
1
/ (x* 4 2x + 1)dx
0

we can write an ordinary function representing the integrand as
follows:

static double integrand(double x) {
return x*x + 2 * X + X;

}

Function pointers

We can then pass this integrand to our integrate function

double testIntegrateFunctionPointer() {
double value = integrate(&integrand, 2, 1);
ASSERT_APPROX_EQUAL(
value,
2.3333, 0.01);

» Note the & symbol before integrand.

» &integrand is called a function pointer.

Sorting with lambda functions

void sortExample() {
vector<string> list({ "Z", "x", "a", "B" });
sort(list.begin(), list.end(),
[1(string& x, string& y) {
return uppercase(x) < uppercase(y);

b

Summary

» Passing functions as parameters is a common requirement in
C++.

» Use the class std: :function to pass functions as parameters.

» Use lambda functions to quickly write new function objects.

	Function Objects and Lambda Functions

