MonteCarloPricer.cpp
#include "MonteCarloPricer.h"
#include "matlib.h"
#include "CallOption.h"
using namespace std;
MonteCarloPricer::MonteCarloPricer() :
nScenarios(10000),
nSteps(10) {
}
double MonteCarloPricer::price(
const ContinuousTimeOption& option,
const BlackScholesModel& model ) {
int nSteps = this->nSteps;
if (!option.isPathDependent()) {
nSteps = 1;
}
double total = 0.0;
// We price at most one million scenarios at a time to avoid running out of memory
int batchSize = 10000000/nSteps;
if (batchSize<=0) {
batchSize = 1;
}
int scenariosRemaining = nScenarios;
while (scenariosRemaining>0) {
int thisBatch = batchSize;
if (scenariosRemaining<batchSize) {
thisBatch = scenariosRemaining;
}
Matrix paths= model.
generateRiskNeutralPricePaths(
option.getMaturity(),
thisBatch,
nSteps );
Matrix payoffs = option.payoff( paths );
total+= sumCols( payoffs ).asScalar();
scenariosRemaining-=thisBatch;
}
double mean = total/nScenarios;
double r = model.riskFreeRate;
double T = option.getMaturity() - model.date;
return exp(-r*T)*mean;
}
//////////////////////////////////////
//
// Tests
//
//////////////////////////////////////
static void testPriceCallOption() {
rng("default");
CallOption c;
c.setStrike( 110 );
c.setMaturity( 2 );
BlackScholesModel m;
m.volatility = 0.1;
m.riskFreeRate = 0.05;
m.stockPrice = 100.0;
m.drift = 0.1;
m.date = 1;
MonteCarloPricer pricer;
double price = pricer.price( c, m );
double expected = c.price( m );
ASSERT_APPROX_EQUAL( price, expected, 0.1 );
}
void testMonteCarloPricer() {
TEST( testPriceCallOption );
}